Strict schema or schemaless?
Quickwit lets you place the cursor on how strict you would like your schema to be. In other words, it is possible to operate Quickwit with a very strict mapping, in an entirely schemaless manner, and anywhere in between. Let's see how this works!
To execute the CLI commands throughout this guide, install Quickwit and start a server in a terminal with the following command:
./quickwit run
A strict mapping
That's the most straightforward approach. As a user, you need to precisely define the list of fields to be ingested by Quickwit.
For instance, a reasonable mapping for an application log could be:
version: 0.6
index_id: my_strict_index
doc_mapping:
mode: strict # <--- The mode attribute
field_mappings:
- name: timestamp
type: datetime
input_formats:
- unix_timestamp
output_format: unix_timestamp_secs
precision: seconds
fast: true
- name: server
type: text
tokenizer: raw
- name: message
type: text
record: position
- name: severity
tokenizer: raw
timestamp_field: timestamp
search_settings:
default_search_fields: [severity, message]
indexing_settings:
commit_timeout_secs: 5
The mode
attribute controls what should be done if an ingested document
contains a field that is not defined in the document mapping. By default, it takes the lenient
value. In lenient
mode, the fields that do not appear in the document mapping will simply be ignored.
If mode
is set to strict
on the other hand, documents containing fields
that are not defined in the mapping will be entirely discarded.
Schemaless with a partial schema
mode
can take another value: dynamic
.
When set to dynamic, all extra fields will actually be mapped using a catch-all configuration.
By default, this catch-all configuration indexes and stores all of these fields, but this can be configured by setting the dynamic_mapping
attribute.
A minimalist, yet perfectly valid and useful index configuration is then:
version: 0.6
index_id: my_dynamic_index
doc_mapping:
mode: dynamic
This configuration makes it possible to ingest any JSON object and search them.
However, the dynamic mode can also be used in conjunction with field mappings. This combination is especially powerful for event logs which cannot be mapped to a single schema.
For instance, let's consider the following user event log:
{
"timestamp": 1653021741,
"user_id": "8705a7fak",
"event_type": "login",
"ab_groups": ["phoenix-red-ux"]
}
{
"timestamp": 1653021746,
"user_id": "7618fe06",
"event_type": "order",
"ab_groups": ["phoenix-red-ux", "new-ranker"],
"cart": [
{
"product_id": 120391,
"product_description": "Cherry Pi: A single-board computer that is compatible..."
}
]
}
{
"timestamp": 1653021748,
"user_id": "8705a7fak",
"event_type": "login",
"ab_groups": ["phoenix-red-ux"]
}
Each event type comes with its own set of attributes. Declaring our mapping as the union of all of these event-specific mappings would be a tedious exercise.
Instead, we can cherry-pick the fields that are common to all of the logs, and rely on dynamic mode to handle the rest.
version: 0.6
index_id: my_dynamic_index
doc_mapping:
mode: dynamic
field_mappings:
- name: timestamp
type: datetime
input_formats:
- unix_timestamp
output_format: unix_timestamp_secs
precision: seconds
fast: true
- name: user_id
type: text
tokenizer: raw
- name: event_type
type: text
tokenizer: raw
timestamp_field: timestamp
indexing_settings:
commit_timeout_secs: 5 # <--- Your document will be searchable ~5 seconds after you ingest them.
Our index is now ready to handle queries like this:
event_type:order AND cart.product_id:120391
Execute the following commands to create the index, ingest a few documents and search through them:
cat << EOF > my_dynamic_index.yaml
version: 0.6
index_id: my_dynamic_index
doc_mapping:
mode: dynamic
field_mappings:
- name: timestamp
type: datetime
input_formats:
- unix_timestamp
output_format: unix_timestamp_secs
precision: seconds
fast: true
- name: user_id
type: text
tokenizer: raw
- name: event_type
type: text
tokenizer: raw
timestamp_field: timestamp
indexing_settings:
commit_timeout_secs: 5
EOF
# Create index.
./quickwit index create --index-config ./my_dynamic_index.yaml --overwrite --yes
cat << EOF > my_logs.json
{"timestamp":1653021741,"user_id":"8705a7fak","event_type":"login","ab_groups":["phoenix-red-ux"]}
{"timestamp":1653021746,"user_id":"7618fe06","event_type":"order","ab_groups":["phoenix-red-ux","new-ranker"],"cart":[{"product_id":120391,"product_description":"Cherry Pi: A single-board computer that is compatible..."}]}
{"timestamp":1653021748,"user_id":"8705a7fak","event_type":"login","ab_groups":["phoenix-red-ux"]}
EOF
# Ingest documents.
./quickwit index ingest --index my_dynamic_index --input-path my_logs.json --force
# Execute search query.
./quickwit index search --index my_dynamic_index --query "event_type:order AND cart.product_id:120391
A schema with schemaless pockets
Some logs are isolating these event-specific attributes in a sub-field. For instance, let's have a look at an OpenTelemetry JSON log.
{
"Timestamp": 1653028151,
"Attributes": {
"split_id": "28f897f2-0419-4d88-8abc-ada72b4b5256"
},
"Resource": {
"service": "donut_shop",
"k8s_pod_uid": "27413708-876b-4652-8ca4-50e8b4a5caa2"
},
"TraceId": "f4dbb3edd765f620",
"SpanId": "43222c2d51a7abe3",
"SeverityText": "INFO",
"SeverityNumber": 9,
"Body": "merge ended"
}
In this log, the Attributes
and the Resource
fields contain arbitrary key-values.
Quickwit 0.3 introduced a JSON field type to handle this use case. A good index configuration here could be:
version: 0.6
index_id: otel_logs
doc_mapping:
mode: dynamic
field_mappings:
- name: Timestamp
type: datetime
fast: true
input_formats:
- unix_timestamp
output_format: unix_timestamp_secs
precision: seconds
fast: true
- name: Attributes
type: json
tokenizer: raw
- name: Resource
type: json
tokenizer: raw
- name: TraceId
type: text
tokenizer: raw
- name: SpanId
type: text
tokenizer: raw
- name: SeverityText
type: text
tokenizer: raw
fast: true
- name: Body
type: text
timestamp_field: Timestamp
search_settings:
default_search_fields: [SeverityText, Body, Attributes, Resource]
indexing_settings:
commit_timeout_secs: 5
We can now naturally search our logs with the following query:
merge AND service:donuts_shop
Let's execute the following commands to create the index, ingest a document and execute a search query:
# Create index.
./quickwit index create --index-config ./otel_logs.yaml --overwrite --yes
cat << EOF > otel_logs.json
{"Timestamp":1653028151,"Attributes":{"split_id":"28f897f2-0419-4d88-8abc-ada72b4b5256"},"Resource":{"service":"donut_shop","k8s_pod_uid":"27413708-876b-4652-8ca4-50e8b4a5caa2"},"TraceId":"f4dbb3edd765f620","SpanId":"43222c2d51a7abe3","SeverityText":"INFO","SeverityNumber":9,"Body":"merge ended"}
EOF
# Ingest documents.
./quickwit index ingest --index otel_logs --input-path otel_logs.json --force
# Execute search query.
./quickwit index search --index otel_logs --query "merge AND service:donut_shop"